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Intensity and Distribution of Hybrid-Mode
Fields in Dielectric-Loaded Waveguides
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Abstract —Plots of the intensity and distribution of the electric and
magnetic fields of several propagating and evanescent hybrid modes in
dielectric-loaded circular waveguides are derived and presented. These
plots have not been reported in the literature before, and can be very
valuable in applications using dielectric-loaded waveguides and resonators,
including microwave, millimeter-wave, and optical guiding structures.

I. INTRODUCTION

NALYSIS METHODS for the determination of the

electromagnetic fields in dielectric-loaded waveguides
and cavity resonators have recently received considerable
attention. Among the methods being developed are tech-
niques based on field expansions in terms of eigenmodes of
the guiding structure, the resonators and enclosures [1]-[5],
and on surface integral equations [6]. The results of these
approaches provide quantitative design information that
can help in the development of new microwave and milli-
meter-wave components.

Pictorial display of the transverse fields of various hy-
brid modes in the cross section of a dielectric-loaded
waveguide (Fig. 1) gives significant insight about the field
structure. Such a display can help in the design of devices
using these modes by indicating the locations of strong
fields, their directions, etc., so that this information can be
used to decide the locations of tuning obstacles to adjust
the resonant frequencies of cavities, coupling irises or
probes to excite these modes, or discontinuities to suppress
or avoid the excitation of spurious modes. Kobayashi and
Tanaka [3] calculated the field patterns for hybrid modes
for the case of a dielectric rod without an exterior boundary.
They presented the field patterns only inside the dielectric
rod, except for the HE,; mode, where portions of the fields
outside the dielectric were displayed. Recently, Moller and
Macphie [7] presented sequences of field plots illustrating
the time-varying behavior of fields near discontinuities in
waveguides. The purpose of this paper is to present 1) a
method for the numerical computation and plotting of the
electromagnetic field distribution in a dielectric loaded
waveguide, and 2) the results of the computations showing
the intensity of the electric and magnetic fields as well as
the field lines for various modes that could exist in the
structure.
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Fig. 1. Dielectric-loaded waveguide.

II. METHOD OF FIELD PLOTTING!

The electric (or magnetic) field lines are solutions of the
first-order differential equation [8]

E,(x,y)
E.(x.7) @

where « is the angle between the field vector at (x, y) and
the positive x-axis. The Cartesian field components E and
E, are expressible in terms of the polar components E, and

E, by (see Fig. 2)
E,=E,cos¢— E, siné

L anla(x, )] =

(2)
(3)

A first-order numerical approximation to that trajectory
passing through a point P, is shown in Fig. 2. The calcula-
tions of the trajectory are made by using a first-order
difference scheme in which the point P,,,, whose coordi-
nates are (X,,;, ¥,41), 1S determined from the point P,
whose coordinates are (x,, y,), according to the relations

4)
(5)

E,=E, sin¢ + E cos ¢.

X;41=X;t 8scosa,
Yir1 =), + 0ssing;

where s is a selected path increment.

For the numerical determination of the field lines, several
points need to be taken into account to ensure their
accurate plotting. First, the choice of the path increment
should be made sufficiently small to give smooth and
accurate contour lines, yet not too small to necessitate
undue amounts of calculations. Second, the starting (or

Although the discussion in this section is presented using electric field
components, the same process applies for the magnetic field.
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Fig. 2. First-order difference solution for the field lines.

boundary) points of the contours should be chosen such
that the contour lines may not always be coincident with
the boundary. Finally, each of the field components E, and
E, in (2) and (3) are expressible as the product of two
functions: one is a function of r only, while the other is a
function of ¢ only (1}, i.e.,

E =e/(r)cosne, H,=h(r)sinng
E,=e,(r)sinng, H,=h,(r)cosns.

(6)
(7)

The functions e,(r) and e,(r) (and h,(r) and h(r) for
the magnetic field) are given by [1]

J, (£
er(")= 5 51-, (51) o flr)], O0<sr<a
1
A P.(¢
=?2} §2R’n(§2r)+an——(—r—2’2],
a<sr<b (8a)
Ay [ nJ
()= 51 ) e gen] osrea
1
Av [ nR
=—; u@”*’“fz}’rf({zr)}, agr<gh
2 I r
(8b)
2
jwﬂhr"—“% M‘W%JJ(&")]? 0<r<a
1
A [ nk2R
= z__z_&r_)__a.ylgzpn/(g-zr):l’
1,
a<r<b (8)
Al &
Jjwph = —klz.SlJn’(ilr)+ ( ! } 0<r<a
1L

=— | = kR, (&r) +
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ay nPn(gz") ]
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COMBINATIONS OF £;, {5, AND y
Case g 14 Y Comment s
5 2
No.

1 Real Real Real Not Permissible

2 Real Real Imaginary Permissible for kf > kg.
Propagation in z-direction,
trapped wave in r-direction.

3 Real Imaginaty Real Permissible, Cut~off wave in
z~direction standing wave in
r-direction. Replace I by

© J,and K by Y in Eq. ROESR

4 Real Imaginary | Imaginary Permissible, Propation in
z~direction, standing wave
in r-direction., Replace In
by J and K by Y in Eq. "(8)~(14).

5 Imaginary Real Real Not permissible.

[ Imaginary Real Imaginary Permissible. Propagation in
z-direction, trapped wave in
r-direction, Replace J by

1 inEq. (8)~(14).

7 Imaginary Imaginary Real Not permissible,

8 Imaginary Imaginary Imaginary Permissible for ki > kf.
Propagation in z-direction,
standing wave in r-direction,
Replace by I H I by J
and X Y 1" Eq? (8 2 s

where A is an arbitrary constant, and where
§=ki+y® §G=—(ki+v?)

Ki=e ki K=ek} k3= ©)

I(n(§2r)‘[r: fzb)_ln(fz" K, fzb‘
Fa(&ar) = Ji(1a) _Kn(fza)Jn'Egzb)_ I,,(sza))K,:((zzb)) ]
‘\ (10)
[ Kn(§2r)ln(§2b)_In(§2r)Kn(§2b) }
| K, ($,0)1,($:0)— 1,($,0) K, (§,0)

1
Un=an(£1a)[—ﬁ+“i—;} (11)
1 2

2
WHoEy

R,($r)=J,(&0)

_ Jn’(gﬂ) + P,{(fza)
" £a $ra
o= - -gﬁ ‘ (12)

n

J,(+), I,(+), and K,(+) are the Bessel functions and the
modified Bessel functions of the first and second kinds,
respectively. The propagation constant y must be com-
puted by solving the characteristic equation

UZa*y?+ k2a*V,W,=0 (13)
where
Ji(§,a) R; (Kza)
W =¢ +e, 14
n r ila 3 {261 ( )

The field components and characteristic equation of (8)
and (13) are based on the assumptions that the waves
existing in the waveguide have real radial wavenumbers &,
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Fig. 3. Field distribution for HE;; mode.
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Fig. 4. Field distribution for HE,, mode.

and {,. This assumption leads to the particular choices
made for the radial functions (J, for r <a, K, and I, for
r > a) with real arguments. Several other types of solutions
‘may exist, for which valid field configurations are possible.
These possibilities are determined by the various combina-
tions of the real and purely imaginary nature of the radial
wavenumbers £;, {, and the propagation constant y. Table
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Fig. 5. Field distribution for HE,, mode.
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Fig. 6. Field distribution for HE;; mode.

I shows all eight possible combinations that can be ob-
tained by allowing each of the quantities £, {,, and y to
take on either real or imaginary values. Valid combinations
must satisfy (9) and (13) simultaneously. It is easily seen
that combinations 1, 5, and 7 in Table I cannot satisfy
these conditions, and hence are not permissible. The re-
maining five combinations can satisfy (9); however, the
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Fig. 7. Field distribution for HE,; mode.

MODE-HE22
! 394 XHCHES

*» -‘ /

11
=3

~ .o

®

-

(2] a

R T s a s o ¢ LA N I SO N S A S S R S e

Fig. 8. Field distribution for HE,, mode.

existence of solutions must be determined for each of these
combinations by finding if the roots of (13) exist. For the
cases considered in this paper, no roots of (13) were found
which correspond to ¢, being imaginary; hence, only com-
binations 2, 3, and 4 in Table I are considered.

Thus, for -efficient numerical evaluation of the fields,

“rather than computing two two-dimensional arrziys for E,
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Fig. 9. Field distribution for HE,, mode.
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Fig. 10. Field distribution for HE,, mode.

and E, from (6) and (7) at a grid of points (;, ¢,), only
two one-dimensional arrays of values of the functions e.(r)
and e (r) given by (8) are computed and stored for a
prescribed set of points (r,) of the variable r. These values
can subsequently be used with (2) and (3) to find the fields
at any given location. in the dielectric-loaded waveguide
cross section. The increment in r, can be chosen small
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Fig. 11. Field distribution for HE,, mode.
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Fig. 12. Field distribution for HE,, mode.

enough so that, if necessary, linear interpolation can be
used to find the values of the functions e, and e, at
intermediate points.

III. Fi1eLD PLOTS—RESULTS

Two sets of graphs are generated. The first set are field
plots which display the direction of the transverse electric
and magnetic field lines in the cross section of the guide.
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Fig. 13. Field distribution for HE,, mode.
TABLE II
PARAMETERS OF THE FIELD PLOTS IN FIGS. 3-13
Figure Mode Frequency (Ela) (;23)2 (88)2 a
No. {GHz )

3 HE11 4.0 2.2607 20,6160 71.3190 0.7165
4 HE12 4,0 4,4052 6.3203 7.0232 -5.5122
5 HE21 4,0 3.6865 12,1360 12.8390 0.8038
6 HE31 4,0 6.7953 ~20,4500 -19,7480 -5,4173
7 HE23 4.0 5.8560 -8.5659 -7.8630 -3,7744
8 HEZZ 4.0 5.0922 -0.2040 0.4990 -21.5167
9 HEZZ 8.0 5.9195 67.8650 70.6770 -2,7153
10 HE13 4.0 5.2145 -1.4651 -0.7622 -5.2189
il HEIA 4.0 543523 -2,9207 -2.2178 ~1.2705
12 HEZA 4.0 6.6960 -19,1100 -18.4070 -0.1220
13 HE24 8.0 8.8759 24,1240 26,9350 -7.8145

The second set show the variation of the field intensity in
the radial direction by plotting the field components e,, e,,
h., and h, given by (8) as a function of r. Both sets are
shown for the nine hybrid modes having the lowest cutoff
frequencies, in Figs. 3-13. The parameters used in the
generation of these plots are

€, =376 b=0.5" a=0.39".

Table II lists the rest of the relevant parameters for each of
these figures. It should be noted that the modes with
negative values of (Ba)? are cutoff modes at the frequen-
cies indicated. Figs. 3-5, 9, and 13 correspond to combina-
tion (2) in Table I; Figs. 6, 7, and 10-12, correspond to
combination (4) in Table I, and Fig. 8 corresponds to
combination (3) in Table 1.
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IV.  CONCLUSIONS

The field plots presented in this paper are useful qualita-
tive tools that display pictorially the field structures for the
hybrid modes in dielectric-loaded waveguides. They can
help in the design of devices using these modes by indicat-
ing locations of strong fields, their directions, etc. Mode
types that can exist in the guiding structure are categorized
in terms of possible combinations of propagating or cutoff
waves in the axial direction, and standmg or attenuating
waves in the radial direction. Although the results were
iltustrated for a material of high dielectric constant and the
frequency range 4-8 GHz, the technique and the programs
developed are applicable for other materials and frequen-
cies, including millimeter and optical wavelengths.
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